PhD Course
March 2025

‘ ‘

g
B
B
B
(—

Roberto Bruni, Roberta Gori
(UniversitysofiPisa
I Lecture #09 I

[source]

https://www.acunetix.com/blog/web-security-zone/dynamic-static-code-analysis-web-security/

Abstract Interpretation

Abstract Interpretation

It Is a technigque to formally reason on approximations

It allows to derive effective methods to compute approximations
Generally used to compute overapproximations
Seldom used to compute underapproximations

Example: out of bounds

function arrayOutOfBounds(int n, int x[10]) {

Let us assume n > 0

if n >= 10 then

n =n->5
else
a = ++n

a = Is it a safe access? (0 < a <9?)

return x[a] }

Using exact semantics

function arrayOutOfBounds(int n, int x[10]) {
(0,) (1,)(2,_)(3,) (4,)(5, (6,)(7,_)(8,_)(9,_)(10,_)..

a = 0
(0,0)(1,0)(2,0)(3,0)(4,0)(5,0)(6,0)(7,0)(8,0)(9,0)(10,0)...

1f n >= 10 then
(10,0)(11,0)(12,0)(13,0)(14,0)(15,0)(16,0)(17,0)(18,0)(19,0)...

n =n -5

(5,0)(6,0)(7,0)(8,0)(9,0)(10,0)(11,0)(12,0)(13,0)(14,0)...

else

a = ++n

We can’t track the infinite set of pairs!
use intervals !
a = max(0,a — n)

return x[a] }

Example: interval abstraction

function arrayOutOfBounds(int n, int x[10]) {
[0,00]
a =0
[0,00][0,0]
1f n >= 10 then
[10,00][0,0]
n =n -5
[5,00][0,0]
else

[0,9][0,0]
a = ++n

Merging branches looses precision

[1,10][1,10]

 etarn]x[a]

Abstract Interpretation: the idea

Goal: Compute the set S of possible values at each line of code

But... this is not feasible in general

We want to find an (over)approximation S C §

The theory of abstract interpretation allows to compute 5™ as a
set of abstract values obtained by applying abstract operations

Abstraction and concretization

Concrete domain

The set of values S that we would like to compute belongs to the concrete domain C

(§o(£), &)

t...,— 1,0,1,2,...}

T

5 (0,12,...}
(o=2-1) \
(1,2,...)
C(=2,-1) {01} (1.2} ..

/\%

=2 =1y oF (b g2y

Abstract Domain

(A, C) expresses some properties of the concrete values

Sign

For example / \
The order L on the abstract domain reflects the precision \ /

eg LEK

Ingredients of Abstract Interpretation

A concrete domain C
- An abstract domain A

» An abstraction function a that connects the concrete domain to the abstract one
» A concretisation function y that relates the abstract domain to the concrete one

Defining concretisation

C A

{....—10,12,...}) Sign

/\{01 -
{...,—22,—1} ,,\,

> ()

Defining approximation

C A

Sign

;<

Any set that contains negative integers only

Defining approximation

Any set that contains positive integers only

Defining approximation

Concretization function
Definition
Concretization function y : A — C is a monotone function
that maps abstract a into the greatest concrete ¢ that it approximates

C (..—1.012..1 14
/\()12 A
(=2, 1))]
(1.2,
| (—2 1) 011 (12]

Defining approximation

C A
_n _ {012 }
2 1) R
{1,2,...}
11— 2 {01} (1,2} ..

1} {0} {1}

Defining approximation

i R
s {12

_2,Ei1} {0,1§ﬂ{1,2} .

b =1} {0} {1} 21...

Defining approximation

Defining approximation

C A
PN Sign
(=221} (012

{1,2,...

(=2~ 1)

.) }
/\ {0,1%,2} <0 > ()
=2y (=1} 2}... \/
\/ l

Abstraction function
Definition
Abstraction function a : C — A is a monotone function

that maps concrete ¢ into the most precise abstract element that
approximates It.

a
c .. —1012.) A
/ T
=221 ST (12) - <0
/
.4=2y {=1} {0} ({1}

~\ |

> ()

Abstraction function

Remark

To design an abstraction function a : C — A the abstract domain
must be closed under meet.

In this abstract domain the most precise element that approximates {0} does not exist

(....—10,12,...}

B _/ (0,1.2,...)
{..., :2, 1} <X
(1,2,...
~2, —1} {O,lf L2y

/\ _—7

A2} {oy} 2}...
\k J_

Abstract Interpretation
(Al)

Properties of Galois insertions

(C, C) [(A, E)

i

* (@ and y are monotone » Y

e ¢ C y(a(c)) 7(0‘(6));' I I ‘a(c)
» a(y(a)) = a |

Correct approximations
(C,C) “4,C)

W
F¥)

Ffa J aF

Best correct approximation (bca)

(C,C), (4, E)

+

a \
I
* FA(a)
F(c) p
4 \
c

*

FA 2 aFy

Abstract operations: +

(P(Z), C) Py
+: (Z) = p(Z) ~

(12} {....=2,-1} T
> 0 <0 > ()

(3.5} + (—2.4} = {1,7.3.9)
| | |

We .Io_st
precision
(X
(3} + {=2) = (1)

(1,2....) (1,2...} (2.3...)
| | |

(3} + (2} = {5

Abstract operations: X

(§2(Z), C) ~_"

X g(ZL) = g(£)
(3,5} x {=2,4} = {=6,12, - 10,20}

> 0 <0 <0 Q Precise result!
{Lz,u}gL.w—cz—P}{.“,— {—1}

13) X {=2} = {—6j

0 —f g
UQW}[-uLJ[l1.2,...

> 0 > () > 0
{3} X {2} = {6}

Correctness

The abstract operations +7and X" are correct on the domain Sign:

<0

/\
VP,Q € @(Z). a(P) +* a(Q) T a(P + Q) ~

Remember F™ is correct on an abstract domain A
whenever it returns an approximation of the result of the concrete computation:

Ffa 3 aF

>0

Completeness

The abstract operation X" has a very nice property on the domain Sign:

<0/\ >0
A ~

VP,Q € @(Z). a(P) X" a(Q) = a(P X Q)

F7is complete on an abstract domain A whenever it also holds:

Ffa = aF

Completeness and bcas

F%is complete —> F* = FA

|
R

aF = Fla = F*=aFy=F'ay

Fixpoint computation approximation

If F monotone and F¥ correct

a / lfp(F ") A, C
(C9 g) lfp(F) NG ’ ()

g

F

[fp(F™) is a correct over approximation of Ifp(F)

FiXxpoint computation approximation

f F monotone and F* is complete

/ Ifp(F) C Ifp(FY)

n (A, E)

(C, C)

C

_

Abstract domains

Intervals [— 00, + oo]

b P W 4 » F \ /
Elements of A: [-3,0] [-2,1] [-], [0.3]

« | the empty set of values £ \ / \ / \ / \/

o [ng,n(l, n € (ZU {—}), ni € (ZU {+x}),ny < ny [—- —l] 2,00 [-1,1] [0,2] 1, x]

5. \/ /\

=2,—-1] [-10] [”] 1.2]

N
L is the interval inclusion \/ \ & & / \ /\/

- —_] [l—l] [0,0]

- o
- =

v(L) =4} alc) = Lif ¢ =0,
v(ng,n1]) ={nezZ |ng<n<ny} a(c) = [min(c), max(c)] if ¢ # 0, min(c) and maz(c) exists
Y(|—oo,n1]) ={neZ|n<n} a(c) = [min(ce), +oo] if ¢ # (), min(c) exists
v(|ng,+o0|) ={n € Z|ng <n} ac) = [—oo,max(c)] if ¢ # 0, max(c) exists
v([—o00, +o0]) = Z a(c) = |—00, +00] otherwise

+4 and X4 are complete on Int

p P 4 R K x A

A B 3.0 [-2,1] [-12] [0.3]
. m] +4 Lp.r] = -+ pom + 1 NN\ N
—3,—1] [-2,0] [-1,1] [0,2] [1,3]
[n,m] X [p,r] = [n X p,m X r] N NSNS N
-2,-1] [-1,0] [0,1] [1.2]
S NN ¥
attention ‘]‘_ [=1.-1] [0,0] 1, 1] 2.2
\\"\I/

<
1

11,46} +{-3,1} ={-2,1,2,3,5,7}

lTests are not complete on Int

=7, = 1]

Concre)’e (x <0)

P ={—1)} > =[x <O)]P

Example: translation

Example: rotation

Composition of bcas

The composition of bca is not always a bca

For F* and G* bca, in general

FAG? # (FG)* Indeed aFyaGy 3 aFGy because ya 2 id

Example

Composition of complete
abstractions

The composition of complete abstractions is always complete

For F* and G complete abstractions

"G" F" FG [“1 RN
— — -3.U — —). 3
[=3,~1 [— 0 [- % 1] 0,2 [1 ‘]
. W'V a0 W 4 \
Example =2, —1] [li)] 0, 1] 1.2
\./ \ / \ /\ W
F = -+ 1 G = = 1l FG =1 [—3-?’.]. [—1':'] [”"’] -['] --[3 2]
ﬁ#\ /G'#\ ﬁ@\ b

12,3] 13,4] 12,3] 12,3] 12,3]

Non-relational domains

The domains of Sign and Interval are non-relational domains

They cannot track relations between variables values

The set of states

x— 1l,y— 6
{[x = L,y — 6] Q Y t ’ |
— [x+~[1,10],y ~ [6,15]] ——— x> 1y 7]

lx — 3,y > §]
[x = 10,y — 15]} -

Relational domain
Octagon domain

sets of numerical constraints of the form
Txxy<c
(at most two variables per constraint, with unit coefficients)

The set of states
r < 10

x> 3y 8 T YS0
x> 10,y — 15]) S =

Relational domain
Convex Polyhedra domain

sets of numerical constraints of the form
cCiX+cy<c

(at most two variables per constraint,
with unit coefficients)

does not admit an abstraction map
| o b

best abstraction of O ?

Example: translation

Example: rotation

Refinements of abstraction

An (in)-finite set of points :

1...(9,77)...20,03)....}

Refinements of abstraction

An (in)-finite set of points :

1...(9,77)...20,03)....}

Order on abstract domains

We say that the abstract domain A refines A,,
written A, < A,, iff

VC - C . }/Al(aAl(C)) g yAz(aAz(C)) precise than A,

intuitively, A, is more

Octagons C Int C Sign

Conjunctive properties

program verification often requires the use of
the conjunction of several basic predicates

concrete states = stores with two variables x, y

Intervals abstraction for each variable
abstract state = an interval for each variable

[0,00] [3,8]

Product domain

fx Ag X A,
C .

(ag, a1) = yolag) N yi(a;)
V<t

P rO b I e m EvenOdd

concrete stores = stores with one variable x \

odd

Int X EvenOdd

e.g. an abstract state ([2,10], even)
describes even values between 2 and 10

but also ([1,11], even) represents the same
concrete set {2,4,6,8,101}!

Reduced product A, M A,

/'

(Ag XAz AgN A,

(Cl(), al) = (Cl(/), Cli) g }/X(a(), al) — VX(CI(’), Cli)

Yalag, ail2) = rolag) N y(ay)

Abstract program analysis

Regular commands

regular
command atomic
command
| A——
| n

=skip | x:=a | b? |..

r1+r2 =n|x|la+a,|..

br=a, <a|b Ab,|..

Collecting semantics

[skip]]P £ P
[x :=a]]P £ {o][x — [a]lo] | 6 € P)
(2P = [[P]|P

[ry; 1P = [, ([, 1P)

L7 + P = L lPUIrlIP

[*1P 2 | [1°P
k=0

Abstract semantics

[el?a = [e]l* = (a o [e] °y)a

7 Vz]]Aa — [[VQHA([[I”1]]AQ)

Just a composition of bcas!

L+ nrllha = L lha Vv lInllia

[Tha & \/ ([rT})a

Example on Interval

Cq > . X .= 10,
X :=10; Cofﬁ? ([x+~— [W010]]
while (x>0) { (x> 0)?;
}X = X1 X [m,lo]]h Abst
, {x=01}? x:=x—1; ract loop Iinvariant
Lo 8.9]]
(x <£0)?

[x — [0,0]]

Example on Interval

[x— []
x = 10;
o ([x+ [®l0]]
2
C) m‘? x>1)7;
X :=10; ~ '(\C’O [x — [1,10]] h Abstract loop invariant
Whl|e)£)(i1))(_{2 X=x—2:
1 ._—0 5 [x — [8 ,3]]
- 1x=0}) [x = [0,10]]
(x < 1)?

[x = [0,1]]

The precision of the analysis
depends on how the program IS

\ e
o written!l! o
Com? 3,0
Like complexity

c, 'S a property of €2 10
X :=10;

x :=10; b) while (x>1) {

while (x.>0) { computed X 1= X-2
X 1= X-1 function!! }; {(x=0)}
b {x=0} R

X € 0.0] X € [0,1]

2021 36th Annual ACM/IEEE Symposium on Logic in Computer Science (LICS) | 978-1-6654-4895-6/20/$31.00 ©2021 IEEE | DOIL: 10.1109/LICS52264.2021.9470608

A Logic for
Locally Complete Abstract Interpretations

Roberto Bruni*, Roberto Giacobazzit, Roberta Gori*, Francesco Ranzato®
*University of Pisa, Italy
iUniversity of Verona, Italy
§University of Padova, Italy

In loving memory of Anna Maria De Paolis and Dina Gorini

Abstract—We introduce the notion of local completeness in
abstract interpretation and define a logic for proving both the
correctness and incorrectness of some program specification.
Abstract interpretation is extensively used to design sound-by-
construction program analyses that over-approximate program
behaviours. Completeness of an abstract interpretation A for
all possible programs and inputs would be an ideal situation
for verifying correctness specifications, because the analysis can
be done compositionally and no false alert will arise. Our first
result shows that the class of programs whose abstract analysis
on A is complete for all inputs has a severely limited expres-
siveness. A novel notion of local completeness weakens the above
requirements by considering only some specific, rather than all,
program inputs and thus finds wider applicability. In fact, our
main contribution is the design of a proof system, parameterized
by an abstraction A, that, for the first time, combines over- and
under-approximations of program behaviours. Thanks to local
completeness, in a provable triple -4 [P] c [Q)], the assertion
Q@ is an under-approximation of the strongest post-condition
post[c](P) such that the abstractions in A of) and post[c]|(P)
coincide. This means that () is never too coarse, namely, under
mild assumptions, the abstract interpretation of c does not yield
false alerts for the input P iff Q has no alert. Thus, -4 [P] c [Q)]
not only ensures that all the alerts raised in Q are true ones, but
also that if () does not raise alerts then c is correct.

I. INTRODUCTION

Technology, you can’t live without. But any coin has two
sides and software failures are increasingly more frequent and
their consequences are more disruptive in the Digital Age than
ever before. Quoting Dijkstra’s speech at the Turing Award
lecture [11], the only effective way to raise the confidence
level of a program significantly is to give a convincing proof
of its correctness. Since correctness proof attempts may fail
even when the program is correct, also incorrectness proofs
would be needed to catch actual bugs, because you can’t fix
what you can’t see. Code-review processes and test-driven
development are widely adopted best practices in software
companies. Nevertheless, the problem is far from being solved
and static reasoning should be extended to bug catching, as
advocated by O’Hearn’s incorrectness logic (IL) [24].

Static program analysis has been investigated and used
for over half century and is a major methodology to help
programmers and software engineers in producing reliable
code [4], [12], [15], [18], [23], [27], [28]. Static analysis is
based on symbolic reasoning techniques to prove program
properties without running them. Given a program c and a

978-1-6654-4895-6/21/$31.00 (©2021 IEEE

correctness specification Spec, the aim of a static verification
is either to prove that the behaviour of c satisfies Spec or to
raise some alerts that point out which circumstances may cause
a violation of Spec. The conditional is needed because, starting
with the fundamental works by Hoare [18], program verifiers
tend to over-approximate the program behaviour: this is an
unavoidable consequence of the will to solve an otherwise un-
decidable analysis problem. As any alerting system, program
analysis turns out to be credible, when few, ideally zero, false
alerts are reported to the user [9]. The dual perspective has
been recently tackled by incorrectness logic [24]: exploiting
under-approximations, any violation exposed by the analysis is
a true alert. This makes IL a credible support for code-review,
but Spec may be violated even when no alert is reported.

Abstract interpretation [6]—[8] is a well-established frame-
work for designing sound-by-construction over-approxima-
tions of the program behaviour. Given an abstraction A,
instead of verifying whether the strongest post-condition
post[c|(P) for a program c and a pre-condition P (also written
[c] P) satisfies a correctness specification Spec, a (sound) ab-
stract over-approximation A(post[c|(P)) is considered. While
it is obvious that if A(post[c](P)) satisfies Spec then the
program is correct, it may happen that A(post[c](P)) does
not satisfy Spec even if the program is correct, because
A introduced false alerts. Once the specification Spec and
its abstract approximation in A coincide, the ideal program
analysis is achieved by assuring that a sound analysis is also
complete, so that no false alert is ever raised.

Technically, in a domain A of abstract program stores,
with abstraction and concretization maps « and v resp.,
any store property P is, in general, over-approximated by
A(P) = ya(P) O P. Assuming that Spec is expressible
in A means that Spec = A(Spec) holds. For instance, in
the abstract domain of intervals Int (see Example IIL.5) the
property x > 0 is expressible by the infinite interval [0, +o0].
By contrast, x # 0 is not expressible in Int, since the least
over-approximating interval is Int(z # 0) = Z 2 Z ~ {0}.
An abstract semantics associates with each program c a
computable function post4[c| : A — A on the abstraction A
(also written [[c]]ﬁA). By soundness of abstract interpretation, if
v(post 4[c]a(P)) C Spec then {P} c {Spec} is a valid Hoare
triple. However, when ~y(post4[c]a(P)) € Spec we cannot
conclude that { P} ¢ {Spec} is not valid, because any witness
in y(post4[c]a(P)) \ Spec is just a potentially false alert.

Authorized licensed use limited to: University of Pisa. Downloaded on February 28,2024 at 10:24:30 UTC from IEEE Xplore. Restrictions apply.

LICS 2021

any (locally) complete under approximation
either proves the program correct or
iIncorrect (without false positives

‘

An Axiomatic Basis for
Computer Programming

Over vs Under

The Queen’s University of Belfast,* Northern Ireland

In this paper an attempt is made to explore the logical founda-
tions of computer programming by use of techniques which
were first applied in the study of geometry and have later
been extended to other branches of mathematics. This in-
volves the elucidation of sets of axioms and rules of inference
which can be used in proofs of the properties of computer

programs. Examples are given of such axioms and rules, and
e — —

\Ppci@Qp 7
P]cl@Q

o

~----

N mmm
\/
PR —
&
- m -

- mm

Incorrectness

Il
Incorrectness Logic
PETER W. O’HEARN, Facebook and University College London, UK
Program correctness and incorrectness are two sides of the same coin. As a programmer, even if you would

like to have correctness, you might find yourself spending most of your time reasoning about incorrectness.
This includes informal reasoning that people do while looking at or thinking about their code, as well as that
supported by automated testing and static analysis tools. This paper describes a simple logic for program
incorrectness which is, in a sense, the other side of the coin to Hoare’s logic of correctness.

— —

ABSTRACT INTERPRETATION : A UNIFIED LATTICE MODEL FOR STATIC ANALYSIS

OF PROGRAMS BY CONSTRUCTION OR APPROXIMATION OF FIXPOINTS o
. * R Kk
Patrick Cousot and Radhia Cousot ‘ ’ I ea

Laboratoire d'Informatique, U.S.M.G., BP. 53

38041 Gremoble cedex, France Lccal COmpleteneSS

A(Q) C Spec
N

O C [[c]IP

[c]P € A(Q)
A(Spec) = Spec

----’

Ic| P C Spec
<~
] P () C Spec

O’Hearn’s triples LCL triples

pre

(=

condition

[P] ¢ [O] -, [P] c [O]

condition

abstract

post
condition

any output matching the postcondition can be reached by executing the command
can be reached by executing the command on some input matching the precondition
+

post
condition

any output matching the postcondition

domain

Oon some Input matChmg the precondltlon for any input matching the precondition executing the
command establishes the abstraction of the postcondition

[cIP2Q [EREEERAQ 2[cIP2Q

under Includes just over under Includes just

approximation! reachable states approximation! @ approximation! reachable states

Combining under and over
approximations

Logical correctness

Th.
f 4 [P] r[Q] then Q C [[FIP C A(Q) = [FI,A(P)

Proof.
By induction on the derivation.

Verification

Th.

elither shows the pr-
or exposes sorn ¢

Proof.

[7[|P C Spec & A[[r]|P C Spec
< A(Q) € Spec
< 0 C Spec

Questions

Question 1

letP = (xe {=75D)andr= (x<0)?2;x:=—x.
1. Compute the abstract semantics [[c]|<. . on aSign(P)

Sign
2. Check if the result is the same as ag;,,([[¢[|P)

Question 2

What is the bca for the test (=07) in the Interval domain?

10,0} fn<0<m

(= 07)"[n,m] =
1 Otherwise

Exam question

Sign” -

Consider the abstract domain Sign’ in the figure / \
1. Define the corresponding o and 7.
2. Does it admit a complete abstract multiplication?

Take-home message

Different approaches are often seen in opposition one each other
but we could gain much more from their combination:
abandon any preconception, be open minded!

s)‘o’o -Plg\w)’mg
eO\C\'\ O\”JFT‘O O\C\'\

\\o\s i)'s owoN

meri)', none iIs

betrer thon
the others

{many} (HL ; NC ; SL; IL ; ISL
+
SIL ; SepSIL ; Al)* [thanks]

